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Systematic sampling of discrete and continuous
populations: sample selection and the choice of
estimator

Harry T. Valentine, David L.R. Affleck, and Timothy G. Gregoire

Abstract: Systematic sampling is easy, efficient, and widely used, though it is not generally recognized that a systematic
sample may be drawn from the population of interest with or without restrictions on randomization. The restrictions or the
lack of them determine which estimators are unbiased, when using the sampling design as the basis for inference. We de-
scribe the selection of a systematic sample, with and without restriction, from populations of discrete elements and from
linear and areal continuums (continuous populations). We also provide unbiased estimators for both restricted and unre-
stricted selection. When the population size is known at the outset, systematic sampling with unrestricted selection is most
likely the best choice. Restricted selection affords estimation of attribute totals for a population when the population
size — for example, the area of an areal continuum — is unknown. Ratio estimation, however, is most likely a more pre-
cise option when the selection is restricted and the population size becomes known at the end of the sampling. There is no
difference between restricted and unrestricted selection if the sampling interval or grid tessellates the frame in such a way
that all samples contain an equal number of measurements. Moreover, all the estimators are unbiased and identical in this
situation.

Résumé : L’échantillonnage systématique est simple, efficace et largement utilisé, bien qu’il ne soit pas communément ac-
cepté qu’on puisse prélever un échantillon systématique dans la population visée avec ou sans contraintes sur le caractère
aléatoire de l’échantillonnage. La présence ou l’absence de contraintes détermine quels estimateurs sont non biaisés
lorsqu’on utilise le plan d’échantillonnage comme base pour faire de l’inférence statistique. Nous décrivons la sélection
d’un échantillonnage systématique avec et sans contraintes à partir de populations d’éléments discrets et à partir de contin-
uums linéaire et aréal (populations continues). Nous fournissons également des estimateurs non biaisés à la fois pour une
sélection avec ou sans contraintes. Lorsque la taille de la population est connue au départ, l’échantillonnage systématique
par sélection sans contraintes est très probablement le meilleur choix. La sélection avec contraintes permet d’estimer les
totaux des attributs pour une population lorsque la taille de la population est inconnue (par exemple l’aire d’un continuum
aréal). Cependant, l’estimation par ratio est fort probablement une option plus précise lorsque le choix est soumis à des
contraintes et que la taille de la population devient connue à la fin de l’échantillonnage. Il n’y a pas de différence entre la
sélection avec contraintes et la sélection sans contraintes si l’intervalle d’échantillonnage et la grille du damier sont tels
que tous les échantillons contiennent un nombre égal de mesures. En outre, tous les estimateurs sont identiques et sans
biais dans cette situation.

[Traduit par la Rédaction]

Introduction

Systematic sampling designs are widely used in natural
resource assessment and monitoring surveys. The regular
dispersion of units within systematic samples can appreci-
ably increase precision and almost always simplifies the col-
lection of field data. Although these aspects of systematic
sampling are well known, important statistical issues regard-

ing sample selection and estimation bias appear to be less
well understood, particularly when populations distributed
over linear or spatial continuums are considered.

Standard treatments of systematic sampling (Cochran
1977; Schreuder et al. 1993) focus on discrete populations.
Systematic sampling is generally presented as a 1-in-a rou-
tine, wherein a set of elements separated by an interval a
are selected in tandem. In this context, randomization is
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commonly introduced by the uniform random selection of an
integer between 1 and a, which indexes the initial selection
and anchors the chain of elements forming the sample. The
restriction imposed on random selection allows for system-
atic sampling in the absence of a priori knowledge of a pop-
ulation’s size; it can also be appealing because it results in
an equal probability design, every element of the population
being observed with equal frequency. Nonetheless, an impli-
cation of this restriction is that when the population size is
not evenly divisible by the sampling interval the sample
average is a biased estimator of the population mean. Essen-
tially, since some systematic samples contain more elements
than others, the sample average weights too heavily ele-
ments selected in smaller samples and too lightly those
found in larger samples.

Natural populations, being distributed over space or
through time, are often most readily sampled from a contin-
uous areal or temporal frame. Stands of trees, for example,
are commonly sampled via the selection of spatial coordi-
nates that serve to locate plots, lines, or points. Any
bounded continuous frame can be fractioned into a finite
number of disjoint units that can be treated collectively as a
discrete population, but if the frame has irregular boundaries
it may be impossible to divide it into cells of the same size
and shape. Treating a frame as a continuous entity is appro-
priate also if point-sampling methods such Bitterlich or crit-
ical height sampling are used, if sampling designs that
cannot tessellate the continuum are applied (e.g., circular
fixed-area plots), or if the resource of interest is itself con-
tinuously distributed. Regardless of how the frame is speci-
fied, however, if its confines are known in advance then
systematic samples can be chosen in two distinct ways: (i)
with restricted randomization, where the first sample unit is
drawn at random from a subset of the frame, or (ii) with un-
restricted randomization, where the first sample unit is
drawn at random from the full extent of the frame. Both ap-
proaches are used in practice, though it does not appear to
be widely appreciated that they produce distinct sampling
designs and recommend distinct unbiased estimators.

This article is partly review and partly new, motivated by
our perceived need for a more thorough treatment of the
connection between restrictions on systematic selection and
unbiased estimation. Johnson (2000), Iles (2003), and Man-
dallaz (2008) describe restricted selection from discrete pop-
ulations and continuums. Thompson (2002) briefly covers
unrestricted and restricted selection in discrete populations,
and Gregoire and Valentine (2008) cover restricted selection
in discrete populations and unrestricted selection in continu-
ous populations. No one, so far as we know, covers restricted
and unrestricted selection of systematic samples from both
discrete and continuous populations. Thus, we begin with
1-in-a sampling of discrete populations and extend this de-
sign to the systematic sampling of linear and areal contin-
uums. Our prime objective is to demonstrate how
restrictions on the selection of a systematic sample deter-
mine which estimators are unbiased, when using the sam-
pling design as the basis for inference. Several practical
issues are addressed in the discussion. Proofs of the un-
biasedness of some estimators are provided in the appen-
dix. An extensive bibliography on systematic sampling is
provided by Gregoire (2009).

Systematic sampling of a discrete population
Let PU be a population comprising N discrete elements,

U1;U2; . . . ;UN (see Table 1). Each element, Uk, manifests
a measurable amount, yk, of some trait or attribute of inter-
est. Our objective is the estimation of the total amount of
attribute, ty, or the average amount of attribute per element,
my, for PU, where

½1� ty ¼
XN

k¼1

yk

and

½2� my ¼
ty

N

Under the usual protocols of a 1-in-a systematic sampling
design, the N discrete elements of PU aggregate into a mu-
tually exclusive sets of elements, set Sj comprising nj ele-
ments, with different sets possibly containing different
numbers of elements. Suppose, for example, that element
U1 belongs to set S1. The other n1 – 1 elements of set S1

are determined systematically by the design parameter a, i.e.,

½3� S1 ¼ fU1;U1þa;U1þ2a;U1þ3a; . . .g

More generally, if Uk 2 Sj, then

½4� Sj ¼ f. . . ;Uk�2a;Uk�a;Uk;Ukþa;Ukþ2a; . . .g

Thus, the design parameter, a, and the order of the ele-
ments in PU determine a population, PS, comprising the a
sets of elements; it is this latter population that is sampled
when a 1-in-a design is applied. The expected number of
elements per set is N/a, a real valued number. However, a
set can comprise only whole elements, so the a different
sets in PS comprise the same number of elements only if N
is an integer multiple of a. Regardless,

Table 1. Symbols for discrete populations.

Symbol Definition

a Number of sets in PS (1-in-a systematic sample)
N Number of elements in PU

nj Number of elements in set Sj
pj Selection probability of Sj
PS Population of sets S1;S2; . . . ;Sa
PU Population of elements U1;U2; . . . ;UN

Sj The jth of a sets of elements in PS

tj Sum of attributes for elements in set Sj
Uk The kth of N elements in PU

�yj Average attribute per element in set Sj
yk Attribute of element Uk

my Average attribute per element in PU

ty Total attribute in PU and in PS
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½5� N ¼
Xa

j¼1

nj

The total amount of attribute in set Sj is tj, i.e.,

½6� tj ¼
X
Uk2Sj

yk

whence

½7� ty ¼
Xa

j¼1

tj

In the systematic selection process, we ordinarily select
an element, Uk, at random from PU and then identify the
other elements of the unique set to which Uk belongs. The
systematic sample comprises this set of elements. How we
go about selecting Uk from PU determines which estimators
are unbiased.

Restricted selection
Systematic sampling with a random start is an equal prob-

ability design — each of the a sets of elements has the same
chance of becoming the sample. The selection is restricted
to the first a elements in PU, that is, one of the elements
ðU1;U2; . . . ;UaÞ is selected uniformly at random with prob-
ability 1/a. The set, Sj 2 PS, to which the selected element
Uj (1 £ j £ a) belongs is our systematic sample. Alterna-
tively, we could restrict the selection of an element to one
of the first a elements after Uk, i.e., ðUkþ1;Ukþ2; . . . ;UkþaÞ,
where Ukþa � N. In either case, Sj is selected with proba-
bility pj = 1/a, so the target parameter, ty, is unbiasedly esti-
mated with the Hansen–Hurwitz estimator:

½8� bty; rs ¼
tj

pj

¼ atj

Because the single sample unit is actually the set, Sj, the se-
lection probability, pj, and the inclusion probability, pj, of
Sj are identical, so ty is unbiasedly and identically estimated
by the Horvitz–Thompson estimator:

½9� bty; rs ¼
tj

pj

¼ atj

which can also be derived by noting that the inclusion prob-
ability of Uk is identically 1/a for all k. The average amount
of attribute per element, my, is unbiasedly estimated bybt y; rs=N. The ratio estimator is a third alternative (e.g.,
Thompson 2002):

½10� bty; rat ¼
N

nj

tj ¼ N�yj

where yj = tj/nj is the average amount of attribute per ele-
ment in Sj. The corresponding estimator of my isbmy; rat ¼ �yj. The ratio estimator is unbiased for random-start
systematic sampling only if N is an integer multiple of a, in
which case pj = pj = 1/a = n/N for all j.

Despite its bias, bty; rat often is more precise than an un-
biased alternative. For example, Table 2 contains the bias
and standard errors of estimators of total leaf area based on

1-in-6 and 1-in-8 systematic samplings from a population of
N = 64 leaves, where ty = 1582 cm2 (from Barrett and Nutt
1979). The ratio estimator is biased but more precise than
the Horvitz–Thompson estimator for the 1-in-6 sampling.
The two estimators are identical and unbiased for the 1-in-8
sampling because the population size, N = 64, is an integer
multiple of the sampling interval, a = 8.

Unrestricted selection
Systematic sampling with unrestricted selection is an un-

equal probability design because a set, Sj, is selected from
PS as the systematic sample unit with probability propor-
tional to the number of elements in the set. An element, Uk,
is selected uniformly at random with probability 1/N from
PU, which selects set Sj 3 Uk from PS as the systematic
sample with probability pj ¼ nj=N. Accordingly, the un-
biased Hansen–Hurwitz estimator of ty is

½11� bty; us ¼
tj

pj

¼ N

nj

tj ¼ N�yj

As with restricted selection, pj = pj, so the Horvitz–Thompson
estimator of ty is identical:

½12� bty; us ¼
tj

pj

¼ N�yj

At the elemental level, this estimator can also be motivated
by the fact that the inclusion probability of Uk 2 Sj is nj/N
under unrestricted selection.

Note that both the unbiased Hansen–Hurwitz and Horvitz–
Thompson estimators for unrestricted selection are identical
to the ratio estimator for restricted selection. Also, if N is an
integer multiple of a, then all the estimators of ty are identi-
cal and unbiased with either method of selection. Moreover,
my is unbiasedly estimated by �yj in this situation.

On the other hand, if N is not an integer multiple of a,
then the unbiased estimators for restricted selection are
biased for unrestricted selection, and the unbiased estimators
for unrestricted selection are biased for restricted selection
(as shown in Table 2). The bias of the unrestricted estima-
tors under restricted selection is equivalent to the bias of
the ratio estimator. However, the bias is small relative to
the standard error. Estimators with ‘‘Hansen–Hurwitz’’ and
‘‘Horvitz–Thompson’’ labels are, by definition, unbiased, so

Table 2. Bias and standard errors (SE) of estimators of total leaf
area (ty = 1582 cm2) from 1-in-a samples of 64 leaves.

Restriction a Estimator
Bias
(cm2)

SE
(cm2)*

Yes 6 bt y; rs ¼ atj 0.0 112.4bt y; rat ¼ N �yj –1.5 56.8
Yes 8 bt y; rs ¼ atj 0.0 97.5bt y; rat ¼ N �yj 0.0 97.5
No 6 bt y; rs ¼ atj 4.6 56.4bt y; us ¼ N �yj 0.0 58.4
No 8 bt y; rs ¼ atj 0.0 97.5bt y; us ¼ N �yj 0.0 97.5

*Square root of the estimator’s variance.
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[8] and [11] are not Hansen–Hurwitz estimators and [9] and
[12] are not Horvitz–Thompson estimators when applied in
situations for which they are biased.

Overall, the message is clear. If one knows N at the outset
of sampling, then unrestricted selection is most likely the
best choice (compare rows 1 and 6 in Table 2). If N be-
comes known only after sampling with restricted selection,
then precision is gained through the use of the ratio estima-
tor, though this gain is attended by a small bias.

A circular systematic sampling design also prescribes un-
restricted selection of one of the N elements from PU (e.g.,
Gregoire and Valentine 2008, Chap. 3). Selection of the
other elements proceeds in a circular fashion, so when the
end of the frame (UN) is reached, the remainder of the sam-
pling interval to the next element in the sample continues
from the start of the frame (U1). This ‘‘circular protocol’’
provides for a systematic sample with a fixed number ele-
ments, n, but it does not define a mutually exclusive sets,
unless a = N/n. Accordingly, none of our estimators are un-
biased for circular selection when a 6¼ N=n; however, all of
our estimators are unbiased when a = N/n.

Systematic sampling of a linear continuum
A linear continuum, L, of any length, L, comprises a set

of infinitely many points. For convenience, we specify that
L is contained in [0, L]. Of prime interest is the total
amount of some attribute, tr, that is distributed along the
continuum. Let x denote the location of a point in [0, L],
and let r(x) be the attribute density (the amount of attribute
per unit length) at x. Then,

½13� tr ¼
Z
L

rðxÞ dx

The mean attribute density (average amount of attribute per
unit length) in L is

½14� mr ¼
tr

L

A list of symbols for this section is provided in Table 3.
To put the linear continuum in a context familiar to fores-

ters, let L be the straight central axis of a tree bole of length
L. Let r(x) be the volume per unit length (cross-sectional
area) at x on the central axis; then tr is the volume of the
bole. Another forestry example is represented by the tradi-
tional strip cruise, where cruise lines (transects) are equally
spaced and perpendicular to a continuous baseline, L, with
length L that spans a tract of interest. Each transect yields a
measurement of the attribute of interest, but dividing this
measurement by the width of the search interval (i.e., the
strip width) provides the attribute per unit length, r(x), for
the point x 2 L from which the cruise line emanates. Thus,
the total amount of attribute, tr, distributed along L is
equivalent to the total amount of attribute distributed over
the tract of interest. In an ecophysiological context, L may
be a continuous stream of time, and r(x), the net exchange
of carbon per unit time between an ecosystem and the at-
mosphere, in which case tr is the amount of carbon seques-
tered by the ecosystem in the time interval [0, L].

Our objective is the estimation of tr by a continuous ver-
sion of systematic sampling. The continuous version of sim-

ple random sampling is called crude Monte Carlo. In
unreplicated crude Monte Carlo, a single sample point,
s 2 L, is selected uniformly at random at xs with probability
density f(xs) = 1/L. Heuristically, a probability of 1 is
stretched uniformly across L, giving each point x 2 L a
probability density (probability per unit length) of 1/L. Con-
sequently, xs = uL, where u obtains from Uniform[0,1]. The
total attribute in L is unbiasedly estimated by

½15� btr ¼ rðxsÞ
f ðxsÞ

¼ LrðxsÞ

which we shall call the MC estimator. The mean attribute
density, mr, is unbiasedly estimated by bmr ¼ rðxsÞ.

Restricted selection
In the continuous version of systematic sampling, the lo-

cation of a sample point, xs, and a measurement interval, ‘,
determine a unique set of measurement points, Ts, evenly
spaced across L. The measurement interval is a design pa-
rameter. If L is not an integer multiple of ‘, the number of
measurement points in Ts depends on xs, so let n(xs) be the
number of points in the set Ts determined by xs and ‘.
Hence, the systematic sample comprises the n(xs) measure-
ment points in Ts.

To perform systematic sampling under restricted selec-
tion, we do not have to know L. We restrict the location of
the sample point, s, to a subdomain Lf � L that spans an
interval ½xf; xf þ ‘�. Ordinarily, we use xf ¼ 0, so the sam-
ple point is selected in ½0; ‘�. In either case, the probability
density function, ffðxÞ, is defined for the subdomain, such
that ffðxÞ ¼ 1=‘ for all x 2 Lf. Consequently, the sample
point is selected at xs ¼ xf þ u‘ with probability density
ffðxsÞ ¼ 1=‘. Measurement points in L at xs þ j‘ and
xs � j‘, j = 1, 2,..., complete the systematic sample, n(xs)
points in total.

For estimation, we define a function fðxÞ for the subdo-
main Lf. Each x 2 Lf belongs to the unique set of n(x)
points in L determined by x and ‘. Let fðxÞ be the sum of
the attribute densities for the set of points in L to which x 2
Lf belongs, i.e., for all x 2 Lf,

Table 3. Symbols for linear continuums.

Symbol Definition

f(x) Probability density at x 2 L for unrestricted selection
ffðxÞ Probability density at x 2 Lf for restricted selection
‘ Interval between measurement points
L Length of the linear continuum L

L Linear continuum in [0, L]
Lf Subdomain of L in ½xf; xf þ ‘�
n(xs) Number measurement points in Ts

s Sample point at xs

Ts Systematic sample comprising a set of measurement
points anchored by s

u Uniform [0,1] random number
mr Mean attribute density along L

r(x) Attribute density at x 2 L

�rðxsÞ Average attribute density in Ts

tr Total attribute distributed over L
fðxsÞ Sum of attribute densities in Ts
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½16� fðxÞ ¼ rðxÞ
þ

X
xþ j‘ 2 L0f
j ¼ 1; 2; . . .

rðxþ j‘Þ þ
X

x� j‘ 2 L0f
j ¼ 1; 2; . . .

rðx� j‘Þ

where L0f is the complement of Lf � L. Hence,

½17�

Z
Lf

fðxÞ dx ¼
Z
Lf

rðxÞ dxþ
Z
L0f

rðxÞ dx

¼
Z
L

rðxÞ dx

and, therefore,
R
Lf
fðxÞ dx ¼ tr. Consequently, under sys-

tematic sampling with restricted selection, the target param-
eter, tr, is unbiasedly estimated with a MC estimator, i.e.,

½18� btr; rs ¼
fðxsÞ
ffðxsÞ

¼ ‘fðxsÞ

where fðxsÞ is the sum of the attribute densities in the sys-
tematic sample, Ts. The mean attribute density in L is un-
biasedly estimated by bmr; rs ¼ btr; rs=L. If L is known at the
outset, we can fix n and calculate ‘ ¼ L=n, in which case,
ffðxsÞ ¼ 1=‘ ¼ n=L for all x 2 Lf. Then tr is unbiasedly es-
timated by

½19� btr; rs ¼
L

n
fðxsÞ ¼ L�r ðxsÞ

where �rðxsÞ is the average of the n attribute densities in Ts.
Moreover, mr is unbiasedly estimated by �rðxsÞ. If ‘ 6¼ L=n,
we can use a ratio estimator,

½20� btr; rat ¼
L

nðxsÞ
fðxsÞ ¼ L�r ðxsÞ

The ratio estimator is biased, however, because f ðxÞ ¼ 1=‘
for all x 2 Lf, but there exist x 2 Lf for which
nðxÞ=L 6¼ 1=‘.

Unrestricted selection
Unrestricted systematic selection is easiest if we know L

at the outset. A sample point at xs is selected in L with
probability density f(xs) = 1/L, so xs = uL. Additional points
in L, at xs þ j‘ and xs � j‘, j = 1, 2,..., fill out the systematic
sample, Ts. Because the selection of any point in a set se-
lects the set as the systematic sample, the unrestricted uni-
form selection of a sample point from L is, in effect, a
continuous analog of selecting a set with probability propor-
tional to set size. Unrestricted selection also can be accom-
plished, even though L is unknown, by employing von
Neumann’s acceptance–rejection method: Imagine a contin-
uum L� of length L� that is sure to include all of L. We
select x� ¼ uL�, which becomes the sample point, xs, if x�

occurs in L. Otherwise, we reject x� as the sample point
and repeat the procedure with a new random value of u.

For estimation, we define a function, �rðxÞ, for all x 2 L,
where �rðxÞ is the average attribute density for the unique set
of n(x) points to which each x belongs. Hence,
tr ¼

R
L

�rðxÞ dx, and therefore, an unbiased estimate of tr,
under unrestricted selection, is provided by the MC estima-
tor,

½21� btr; us ¼
�r ðxsÞ
f ðxsÞ

¼ L�r ðxsÞ

where �rðxsÞ is the average of the n(xs) attribute densities in
Ts. The mean attribute density, mr, is unbiasedly estimated
by bmr; us ¼ �rðxsÞ.

If L is an integer multiple of ‘, then n(x) = n for all
x 2 L, in which case [18], [19], and [21] are equivalent un-
biased estimators, and mr is unbiasedly estimated by �rðxsÞ.

Systematic sampling of an areal continuum
We consider an areal continuum, A, with a closed boun-

dary and horizontal area A (see Table 4). We allow A to
comprise a region of interest surrounded by a buffer region
with a closed boundary, in which case A is the area of the
region of interest plus the area of the buffer. The areal con-
tinuum comprises infinitely many location points, with each
location point identified by its coordinates (x, z). Of interest
is the amount of some attribute, tr, that is distributed across
A. Let r(x, z) be the attribute density (the amount of attri-
bute per unit horizontal area) at (x, z), then

½22� tr ¼
ZZ

A

rðx; zÞ dx dz

The mean attribute density across A is mr = tr/A.
The systematic sampling of A involves the selection of a

sample point, s, at (xs, zs). The sample point anchors a sys-
tematic grid of measurement points that span A. The inter-
val(s) between the grid points and their systematic spatial
pattern depend on design parameters. Square, rectangular,
and equilateral triangular grid patterns are popular choices.
The number of grid points in A may change with the loca-
tion of the sample point, though the set of points in any grid
is fixed by the location of the sample point and the design
parameters. Each point in A belongs to one and only one
set of grid points.

Systematic grids are used widely to sample tracts of land,

Table 4. Symbols for areal continuums.

Symbol Definition

A Horizontal area of areal continuum A

A Areal continuum with horizontal area A
Af Subdomain of A with shape and horizontal area

of a grid cell
c Horizontal area of a grid cell
f(x, z) Probability density at ðx; zÞ 2A for unrestricted

selection
ffðx; zÞ Probability density at ðx; zÞ 2Af for restricted

selection
Gs Systematic sample comprising a set of grid points

anchored by s
h, ‘ Design parameters for grid point spacing
nðxs; zsÞ Number of grid points in Gs

r, R Apothem and circumradius of a regular hexagon
s Sample point at ðxs; zsÞ
mr Mean attribute density in A

rðx; zÞ Attribute density at (x, z)
�rðxs; zsÞ Average attribute density in Gs

tr Total amount of attribute in A

fðxs; zsÞ Sum of attribute densities in Gs
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ranging in scale from small fields or wood lots to landscapes
to entire countries. Grid points, for example, may serve as
points from which Bitterlich or perpendicular distance sam-
pling is conducted. They may serve as center or corner
points for plots or plot clusters, or as center points or end
points of transects for line intersect or line intersect distance
sampling. Most of the specialized sampling methods that are
applied on tracts of land, including those just mentioned and
many others, provide attribute densities (amount of attribute
per unit land area) for discrete elements of interest at any
grid point (see Gregoire and Valentine (2008), Chap. 10, or
Mandallaz (2008), Chap. 4). Consequently, the simple esti-
mators that we provide below for areal continuums have
wide applicability, regardless of whether tr is an attribute
of a continuous entity or the sum of the attributes for a pop-
ulation of discrete elements that occurs within the contin-
uum. How we select the sample point that anchors the grid
determines which estimators are unbiased.

To sample A by unreplicated crude Monte Carlo, we se-
lect a single sample point at (xs, zs) uniformly at random
with probability density (probability per unit area) f(xs, zs) =
1/A. This selection is most easily accomplished by the
acceptance–rejection method. Imagine a rectangle, with di-
mensions X � Z, which is large enough to include all of A.
Draw ux and uz from Uniform [0, 1] and test whether ðxs ¼
uxX; zs ¼ uzZÞ occurs in A. If so, accept (xs, zs); if not, draw
new random numbers and repeat. The target parameter, tr, is
unbiasedly estimated by

½23� btr ¼ rðxs; zsÞ
f ðxs; zsÞ

¼ Arðxs; zsÞ

and mr is unbiasedly estimated by bmr ¼ rðxs; zsÞ.

Restricted selection
For systematic sampling with restricted selection, we need

not know A, but we use the design parameters that define
the shape and spacing of the systematic grid.

For illustrative purposes, we let ‘ and h, respectively, be
the intervals between the x coordinates and z coordinates of
points in a rectangular ð‘ 6¼ hÞ or square ð‘ ¼ hÞ grid. The
corresponding grid cell is a ‘� h rectangle, and the location
of the sample point is restricted to a subdomain, Af � A,
of this shape and area. For an equilateral triangular grid
(Fig. 1a), Af is a regular hexagon, so ‘ may be the distance
between grid points (i.e., ‘ ¼ 2r, where r is the apothem of
a hexagon), and h may be twice the circumradius of the hex-
agon (i.e., h = 2R, where R is the circumradius), in which
case the hexagon can be circumscribed by a ‘� h rectangle
(Fig. 1b).

The subdomain Af may occur anywhere in A. For exam-
ple, we may arbitrarily select any convenient location point
ðxf; zfÞ in A that can serve as a vertex of a ‘� h rectangle.
The subdomain Af is either coincident with, or circum-
scribed by, this rectangle. In the former case, the sample
point for a rectangular grid is selected at ðxs ¼ xf þ ux‘; zs ¼
zf þ uzhÞ with probability density ffðxs; zsÞ ¼ 1=c, where
c ¼ ‘h.

For an equilateral triangular grid, the acceptance–rejection
method selects the sample point at (xs, zs) within the hexag-
onal subdomain, Af, circumscribed by the ‘� h rectangle.

The sample point is selected with probability density
ffðxs; zsÞ ¼ 1=c, where c ¼ 3‘h=4 ¼ 3rR is the area of the
hexagon (Fig. 1c). The resultant systematic grid, Gs, an-
chored by the sample point, s, at (xs, zs), contains n(xs, zs)
measurement points in A.

The unbiased MC estimator of tr is the two-dimensional
analog of [18]. Each location point ðx; zÞ 2 Af belongs to a
unique set of n(x, z) grid points in A, so we define fðx; zÞ in
Af to be the sum of the attribute densities for the set of grid
points in A to which ðx; zÞ 2 Af belongs. Consequently,RR

A
rðx; zÞ dx dz ¼

RR
Af

fðx; zÞ dx dz ¼ tr, which is unbias-

edly estimated by

½24� btr; rs ¼
fðxs; zsÞ
ffðxs; zsÞ

¼ cfðxs; zsÞ

where fðxs; zsÞ is the sum of the attribute densities across
the n(xs, zs) grid points in the set Gs. An unbiased estimator
of mr is bmr; rs ¼ cfðxs; zsÞ=A.

If A is the attribute of interest, i.e., tr = A, then r(x, z) = 1
(unit of area per unit area) for all ðx; zÞ 2 A, so A is unbias-
edly estimated by bA ¼ anðxs; zsÞ. If A is known, we can esti-
mate tr with a ratio estimator

Fig. 1. (a) Triangular grid anchored by a sample point ð�Þ; (b)
hexagon, with circumradius R and apothem r, circumscribed with a
‘� h rectangle; (c) the design parameters and the location of the
sample point ð�Þ within the hexagonal subdomain, Af, determine a
unique set of triangular grid points in A.
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½25� btr; rat ¼ A�r ðxs; zsÞ

where �rðxs; zsÞ is the average of the n(xs, zs) attribute densi-
ties. The ratio estimator is unbiased if nðx; zÞ=A ¼ 1=c for all
ðx; zÞ 2 Af. Or, to put it another way, the ratio estimator is
unbiased if A is conterminous with the union of the grid
cells.

Unrestricted selection
For unrestricted selection, we have no need of Af. The

acceptance–rejection method selects the sample point, s,
anywhere in A with probability density f(xs, zs) = 1/A. The
sample point anchors the grid Gs with n(xs, zs) measurement
points in A. By analogy to [21], the target parameter, tr, is
unbiasedly estimated with

½26� btr; us ¼
�r ðxs; zsÞ
f ðxs; zsÞ

¼ A�r ðxs; zsÞ

Moreover, mr is unbiasedly estimated by bmr;us ¼ �rðxs; zsÞ.
The three estimators, [24], [25], and [26], coincide if A

tessellates completely into n grid cells, each with area c.
By this point, the extension of our results to sampling a

three-dimensional container should be obvious. If not, Bad-
deley and Jensen (2005) cover systematic sampling in three
dimensions with restricted selection.

Discussion
A systematic sample ordinarily comprises a single set of

elements or measurement points drawn from a population of
sets. In discrete populations and linear continuums, some
sets may contain one more element or point than the other
sets. In an areal continuum, the variation in the number of
points among potential grids may be much greater, depend-
ing on the shape of the areal continuum and the shape and
size of grid cells. Whether this variation in set size leads to
bias in an estimator depends on the restrictions on random-
ization for the sample selection. To wit, the estimators that
are unbiased for restricted selection are biased for unre-
stricted selection, and the estimators that are unbiased for
unrestricted selection are biased for restricted selection. The
magnitude of the estimation bias, however, will be small in
relation to the variance for most natural populations. Un-
biasedness, nonetheless, retains a certain appeal in natural
resource surveys, particularly those conducted and defended
by public agencies. That the bias in systematic designs can

be eliminated by pairing either sample selection method
with a suitable estimator therefore remains noteworthy.

It is evident from Table 5 that the collection of estimators
derived above resolve into two basic forms. Horvitz–
Thompson theory and ratio estimation for discrete popula-
tions produce distinct estimators when randomization is re-
stricted, but these two strategies lead to the same basic rule
when no restrictions are imposed. There are also obvious
discrete-population analogs for each of the MC estimators,
the latter being generalizations recognizing the continuity of
the population and sampling interval. For example, in a dis-
crete population, the sampling intensity is one element per
sequential set of a elements, and in linear and areal continu-
ums, the intensities, respectively, are one point per interval
of length ‘ and one point per grid cell with area c. More-
over, the MC estimators for both randomization strategies
can be derived with a continuous analog of Horvitz–Thompson
theory (Cordy 1993).

The availability of an array of selection methods and esti-
mators raises the question of which should be adopted in
any given application. Unrestricted randomization selects
systematic samples with probability proportional to the num-
ber of elements or measurement points in the sample; in
principle this suggests improved precision. This selection
strategy also allows one to use the sample mean without in-
curring a design bias. Where restricted randomization is
used, perhaps because population size is not known in ad-
vance, the ratio estimator, though biased, is likely to have
lower variance, as it corrects for realized number of meas-
ured elements or points. However, the area of an areal con-
tinuum may remain unknown even after the completion of a
systematic sampling, precluding ratio estimation. In this
case, restricted randomization provides for unbiased estima-
tion of the total amount of attribute that is distributed over
the continuum of unknown extent.
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Appendix A An estimator of a parameter is unbiased if
the expectation of the estimator equals the parameter. The
proofs of unbiasedness of the estimators for restricted or un-
restricted selection are straightforward. For example, for the
restricted estimator bty; rs ¼ atj,

½A1�
E½bt y; rs� ¼

Xa

j¼1

pjatj ¼
Xa

j¼1

1

a
atj

¼
Xa

j¼1

tj ¼
XN

k¼1

yk ¼ ty

For btr; rs ¼ cfðxs; zsÞ,

½A2�

E½btr; rs� ¼
ZZ

Af

ffðx; zÞ cfðx; zÞ dx dz

¼
ZZ

Af

1

c
cfðx; zÞ dx dz

¼
ZZ

Af

fðx; zÞ dx dz

¼
ZZ

A

rðx; zÞ dx dz ¼ tr

Similarly, for the unrestricted estimator bty; us ¼ N �yj,

½A3� E½bty;us� ¼
Xa

j¼1

pjN �yj ¼
Xa

j¼1

nj

N
N�yj

¼
Xa
j¼1

nj �yj ¼
XN
k¼1

yk ¼ ty

And, for btr; us ¼ L �rðxÞ,

E½btr; us� ¼
Z
L

f ðxÞL �rðxÞ dx ¼
Z
L

1

L
L �rðxÞ dx

¼
Z
L

�rðxÞ dx

Since �rðxÞ is the average attribute density for the unique set
of points to which x belongs

½A4� E½btr; us� ¼
Z
L

�r ðxÞ dx ¼
Z
L

rðxÞ dx ¼ tr

The ratio estimators are biased if the population size is not
an integer multiple of the the sampling interval. For exam-
ple, unless N = anj for all j, then bty; rat is biased, i.e.,

½A5�
E½bt y; rat� ¼

Xa

j¼1

pjN �yj ¼
Xa

j¼1

1

a
N�yj

¼
Xa

j¼1

N

anj

tj 6¼ ty

On the other hand, the ratio estimator is unbiased if N = anj
for all j, i.e.,

½A6�
E½bt y; rat� ¼

Xa

j¼1

N

anj

tj ¼
Xa

j¼1

N

N
tj

¼
Xa

j¼1

tj ¼ ty

Analogous arguments hold in the continuous case.
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